21行python代码实现拼写检查器-亚博电竞手机版

引入

大家在使用谷歌或者百度搜索时,输入搜索内容时,谷歌总是能提供非常好的拼写检查,比如你输入 speling,谷歌会马上返回 spelling。 下面是用21行python代码实现的一个简易但是具备完整功能的拼写检查器。

代码

import re, collections  def words(text): return re.findall('[a-z] ', text.lower())   def train(features):     model = collections.defaultdict(lambda: 1)     for f in features:         model[f]  = 1     return model  nwords = train(words(file('big.txt').read()))  alphabet = 'abcdefghijklmnopqrstuvwxyz'  def edits1(word):    splits     = [(word[:i], word[i:]) for i in range(len(word)   1)]    deletes    = [a   b[1:] for a, b in splits if b]    transposes = [a   b[1]   b[0]   b[2:] for a, b in splits if len(b)>1]    replaces   = [a   c   b[1:] for a, b in splits for c in alphabet if b]    inserts    = [a   c   b     for a, b in splits for c in alphabet]    return set(deletes   transposes   replaces   inserts)  def known_edits2(word):     return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in nwords)  def known(words): return set(w for w in words if w in nwords)  def correct(word):     candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]     return max(candidates, key=nwords.get)

correct函数是程序的入口,传进去错误拼写的单词会返回正确。如:

>>> correct("cpoy") 'copy' >>> correct("engilsh") 'english' >>> correct("sruprise") 'surprise'

除了这段代码外,作为机器学习的一部分,肯定还应该有大量的样本数据,准备了big.txt作为我们的样本数据。

背后原理

上面的代码是基于贝叶斯来实现的,事实上谷歌百度实现的拼写检查也是通过贝叶斯实现,不过肯定比这个复杂多了。 首先简单介绍一下背后的原理,如果读者之前了解过了,可以跳过这段。 给一个词,我们试图选取一个最可能的正确的的拼写建议(建议也可能就是输入的单词)。有时也不清楚(比如lates应该被更正为late或者latest?),我们用概率决定把哪一个作为建议。我们从跟原始词w相关的所有可能的正确拼写中找到可能性最大的那个拼写建议c:

argmaxc  p(c|w)

通过贝叶斯定理,上式可以转化为

argmaxc p(w|c) p(c) / p(w)

下面介绍一下上式中的含义:

  1. p(c|w)代表在输入单词w 的情况下,你本来想输入 单词c的概率。
  2. p(w|c)代表用户想输入单词c却输入w的概率,这个可以我们认为给定的。
  3. p(c)代表在样本数据中单词c出现的概率
  4. p(w)代表在样本数字中单词w出现的概率 可以确定p(w)对于所有可能的单词c概率都是一样的,所以上式可以转换为
argmaxc p(w|c) p(c)

我们所有的代码都是基于这个公式来的,下面分析具体代码实现

代码分析

利用words()函数提取big.txt中的单词

def words(text): return re.findall('[a-z] ', text.lower())

re.findall(‘[a-z] ’是利用python正则表达式模块,提取所有的符合’[a-z] ’条件的,也就是由字母组成的单词。(这里不详细介绍正则表达式了,有兴趣的同学可以看 正则表达式简介。text.lower()是将文本转化为小写字母,也就是“the”和“the”一样定义为同一个单词。

利用train()函数计算每个单词出现的次数然后训练出一个合适的模型

def train(features):     model = collections.defaultdict(lambda: 1)     for f in features:         model[f]  = 1     return model nwords = train(words(file('big.txt').read()))

这样nwords[w]代表了单词w在样本中出现的次数。如果有一个单词并没有出现在我们的样本中该怎么办?处理方法是将他们的次数默认设为1,这里通过collections模块和lambda表达式实现。collections.defaultdict()创建了一个默认的字典,lambda:1将这个字典中的每个值都默认设为1。(lambda表达式可以看lambda简介

现在我们处理完了公式argmaxc p(w|c) p(c)中的p(c),接下来处理p(w|c)即想输入单词c却错误地输入单词w的概率,通过 “edit distance“--将一个单词变为另一个单词所需要的编辑次数来衡量,一次edit可能是一次删除,一个交换(两个相邻的字母),一次插入,一次修改。下面的函数返回一个将c进行一次编辑所有可能得到的单词w的集合:

def edits1(word):    splits     = [(word[:i], word[i:]) for i in range(len(word)   1)]    deletes    = [a   b[1:] for a, b in splits if b]    transposes = [a   b[1]   b[0]   b[2:] for a, b in splits if len(b)>1]    replaces   = [a   c   b[1:] for a, b in splits for c in alphabet if b]    inserts    = [a   c   b     for a, b in splits for c in alphabet]    return set(deletes   transposes   replaces   inserts)

相关论文显示,80-95%的拼写错误跟想要拼写的单词都只有1个编辑距离,如果觉得一次编辑不够,那我们再来一次

def known_edits2(word):     return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in nwords)

同时还可能有编辑距离为0次的即本身就拼写正确的:

def known(words):     return set(w for w in words if w in nwords)

我们假设编辑距离1次的概率远大于2次的,0次的远大于1次的。下面通过correct函数先选择编辑距离最小的单词,其对应的p(w|c)就会越大,作为候选单词,再选择p(c)最大的那个单词作为拼写建议

def correct(word):     candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]     return max(candidates, key=nwords.get)
展开全文
内容来源于互联网和用户投稿,文章中一旦含有亚博电竞手机版的联系方式务必识别真假,本站仅做信息展示不承担任何相关责任,如有侵权或涉及法律问题请联系亚博电竞手机版删除

最新文章

网站地图